Prof Jan Mol

Jan Mol

Professor of Physics
Director of Research (SPCS)

School of Physical and Chemical Sciences
Queen Mary University of London
ResearcherID ORCID Scopus Google Scholar LinkedIn

Research

quantum materials and devices, nanoscale thermodynamics, molecular electronics, solid-state nanopores, quantum sensing, atomically precise engineering

Interests

Summary:
The overarching theme of my research is to engineer materials at the atomic and molecular level with the aim of harnessing their properties for emerging quantum and nanotechnologies. Throughout my career I have worked at the cutting edge of physics, materials science, and chemistry, with a view towards translating fundamental science into real-world technology.

Research Interests:
The overarching theme of my research is to engineer quantum effects in atomic- and molecular-scale devices. During my PhD I developed novel scanning tunnelling microscopy and spectroscopy techniques to investigate the properties of individual dopant atoms in silicon that hold a significant promise for quantum computation. In particular, I mapped out the quantum mechanical wavefunction of atoms that where placed with atomic precision in the silicon substrate. Following my PhD, I started to apply his expertise in quantum transport to molecular-scale devices as an independent researcher. My research now covers a broad range of research topics from fundamental studies of electron transfer in individual molecules, and nanoscale thermodynamics, to applications including solid-state nanopores for DNA sequencing and molecular data storage, and single-molecule biosensors for rapid pathogen detection.

Research highlights from my independent career include the observation of nuclear tunnelling in a graphene-based single-molecule transistor and direct entropy measurement in a nanoscale quantum system. Most recently, I have begun developing atomically precise materials for energy harvesting applications. The scope and impact of my work is reflected by the patents that I have filed on devices for quantum computing, DNA sequencing, neuromorphic computing, and nanoscale manufacturing.

A summary of the work conducted under my supervision is given below.
Quantum interference: Dirac considered the superposition principle by which every quantum state can be represented as a sum of two or more other distinct states to be the most fundamental principle in quantum mechanics. I study the quantum superposition – and the resulting quantum interference – of electrons in low-dimensional nanostructures, including nanowires that are only about silicon 30 atoms in diameter and atomically-thin graphene nanoconstrictions. A telling illustration of the quantum, wave-like, nature of electrons on the atomic and molecular scale is the observation of Fano resonances. First observed by Majorana in atomic excitation spectra, a Fano resonance is wave phenomenon that results from the inference between a continuum of states and a discrete state. Quantum inference in nanometre wide graphene constrictions leads to asymmetric electrical conductance peaks that have a characteristic Fano lineshape and have no classical counterpart. The ability to harness quantum interference in atomic- and molecular-scale systems make them into attractive components in designing functional circuits. Of particular interest in this respect is the question of how much ‘quantumness’ these systems should have for optimal performance. My research shows that electrical conductance in molecular systems is most efficient when it is at the boundary between wave-like quantum transport and particle-like classical transport.

Single-molecule devices: Electron transfer is a ubiquitous chemical process, playing a role in everything from battery technology to our sense of smell. My research on charge transport in single-molecule transistors established the connection between the well-known Marcus theory for electron transfer in chemistry and the orthodox theory of sequential electron tunnelling in physics. Building on my previous work on fabricating and characterising graphene-based single-molecule transistors, and studying the interaction between electronic and mechanical degrees of freedom in these systems, I was able to pinpoint the contribution of nuclear tunnelling (the motion of nuclei through a classically forbidden region) upon reduction or oxidation of an individual molecule. The experimental verification of the theoretical framework to describe charge transport in the presence of electron-vibrational interactions has made a significant contribution in the field of single-molecule electronics. However, the success in contacting individual molecules using graphene nanoelectrodes has not only enabled new science, but also lead to a patent on their use for single-molecule DNA sequencing which is currently licensed to a world-leading biotechnology company based in the UK.

Nanoscale thermodynamics: Heat engines are one of the central tenets of thermodynamics. In cyclical heat engines, a working gas moves through a reversible cycle to transfer heat between a hot and a cold reservoir and perform useful work. The steam engine and the internal combustion engine are two well-known examples of cyclical heat engines. Particle-exchange heat engines also convert thermal energy into useful work, however heat is transferred from a hot to a cold reservoir via the exchange of particles, for example electrons, in a finite energy range. I have created single-electron heat engines where a molecule or quantum dot is placed between a hot and a cold reservoir and the useful work is done by electrons moving against the applied electric field to generate power. Using these single-electron heat engines I was not only able to demonstrate the fundamental limits of the Seebeck coefficient that relates the net charge flow to the temperature difference, but also the effect of level-degeneracy and electron-vibrational interactions.Interestingly, the heat-to-electricity conversion efficiency in these spin-degenerate systems is direct measure for the entropy difference ∆S = kBln2 between one and two micro-states.

Examples of research funding:
Current funding:

£1.4M UKRI Future Leaders Fellowship (January 2020 – December 2023): Molecular Network Heat Engines (PI)
£1.5M EPSRC Platform Grant (August 2018 – July 2023): From Nanoscale Structure to Nanoscale Function (Co-I)
Previous funding:

£5.2M EPSRC Programme Grant (January 2016 – December 2021): Quantum Effects in Electronic Nanodevices (Co-I)
£625k RAEng Research Fellowship (August 2018 – July 2021): Single-molecule electronics (PI)
£1.5 EPSRC Quantum Technology Capital (April 2016 – March 2019): An extensible simulation and test platform for quantum and quantum enabled technologies (Co-I)
£304k Dstl PhD Scholarship (February 2015 – August 2018): Fast, precise electric field sensing using quantum single-electron devices (PI)
£99k Royal Society Newton Fellowship (January 2014 – December 2015): Quantum readout of an electron-spin-resonance transistor (PI)

Publications

solid heart iconPublications of specific relevance to the Centre for Chemical Research

2024

bullet iconEvangeli C, Swett J, Spiece J, McCann E, Fried J, Harzheim A, Lupini AR, Briggs GAD, Gehring P, Jesse S, Kolosov OV, Mol JA and Dyck O (2024). Thermoelectric Limitations of Graphene Nanodevices at Ultrahigh Current Densities. ACS Nano, American Chemical Society (ACS) vol. 18 (17), 11153-11164.  
19-04-2024
bullet iconChen Z, Grace IM, Woltering SL, Chen L, Gee A, Baugh J, Briggs GAD, Bogani L, Mol JA, Lambert CJ, Anderson HL and Thomas JO (2024). Quantum interference enhances the performance of single-molecule transistors. Nature Nanotechnology, Springer Nature vol. 19 (7), 986-992.  
25-03-2024
bullet iconChen Z, Woltering SL, Limburg B, Tsang M, Baugh J, Briggs GAD, Mol JA, Anderson HL and Thomas JO (2024). Connections to the Electrodes Control the Transport Mechanism in Single‐Molecule Transistors. Angewandte Chemie International Edition, Wiley vol. 63 (16) 
14-03-2024

2023

Relevant PublicationChen K, Talha-Dean T, Zheng T, Dimitrov S, Mol J and Palma M (2023). DNA Linked Mixed-Dimensional Heterostructures: The Designing, Nanoscale Control and Device Applications of Tmdc-Quantum Dot Nanohybrids. ECS Meeting Abstracts, The Electrochemical Society vol. MA2023-01 (13), 1309-1309.  
28-08-2023
bullet iconChen Z, Deng J-R, Hou S, Bian X, Swett JL, Wu Q, Baugh J, Bogani L, Briggs GAD, Mol JA, Lambert CJ, Anderson HL and Thomas JO (2023). Phase-Coherent Charge Transport through a Porphyrin Nanoribbon. Journal of the American Chemical Society, American Chemical Society (ACS) vol. 145 (28), 15265-15274.  
07-07-2023
bullet iconPyurbeeva E, Thomas JO and Mol JA (2023). Non-equilibrium thermodynamics in a single-molecule quantum system. Materials for Quantum Technology, IOP Publishing vol. 3 (2) 
27-04-2023
bullet iconNiu W, Sopp S, Lodi A, Gee A, Kong F, Pei T, Gehring P, Nägele J, Lau CS, Ma J, Liu J, Narita A, Mol J, Burghard M, Müllen K, Mai Y, Feng X and Bogani L (2023). Exceptionally clean single-electron transistors from solutions of molecular graphene nanoribbons. Nature Materials, Springer Nature vol. 22 (2), 180-185.  
01-02-2023
Relevant PublicationTalha-Dean T, Chen K, Mastroianni G, Gesuele F, Mol J and Palma M (2023). Nanoscale Control of DNA-Linked MoS2-Quantum Dot Heterostructures. Bioconjugate Chemistry 
18-01-2023
bullet iconAsaad M, Vezzoli A, Daaoub A, Borowiec J, Pyurbeeva E, Sadeghi H, Sangtarash S, Higgins SJ and Mol JA (2023). Ordered arrays of gold nanoparticles crosslinked by dithioacetate linkers for molecular devices. Journal of Materials Chemistry C, Royal Society of Chemistry (RSC) vol. 11 (16), 5431-5437.  
01-01-2023
Relevant PublicationDegousée T, Neal WG, Edwards Z, Singh S, Selvarajah J, Talha-Dean T, Palma M, Schroeder BC and Mol JA (2023). One hour road to high-quality arrays of gold nanoparticles coated with organic ligands. Journal of Materials Chemistry C, Royal Society of Chemistry (RSC) vol. 11 (47), 16518-16526.  
01-01-2023

2022

bullet iconPyurbeeva E, Mol JA and Gehring P (2022). Electronic measurements of entropy in meso- and nanoscale systems. Chemical Physics Reviews vol. 3 (4), 041308-041308.  
01-12-2022
bullet iconBian X, Chen Z, Sowa JK, Evangeli C, Limburg B, Swett JL, Baugh J, Briggs GAD, Anderson HL, Mol JA and Thomas JO (2022). Charge-State Dependent Vibrational Relaxation in a Single-Molecule Junction. Physical Review Letters, American Physical Society vol. 129 (20) 
11-11-2022
bullet iconFried JP, Swett JL, Nadappuram BP, Fedosyuk A, Gee A, Dyck OE, Yates JR, Ivanov AP, Edel JB and Mol JA (2022). Localised solid-state nanopore fabrication via controlled breakdown using on-chip electrodes. Nano Research vol. 15 (11), 9881-9889.  
01-11-2022
bullet iconDyck O, Swett JL, Evangeli C, Lupini AR, Mol J and Jesse S (2022). Contrast Mechanisms in Secondary Electron e-Beam-Induced Current (SEEBIC) Imaging. Microscopy and Microanalysis vol. 28 (5), 1567-1583.  
03-10-2022
bullet iconEvangeli C, Tewari S, Kruip JM, Bian X, Swett JL, Cully J, Thomas J, Briggs GAD and Mol JA (2022). Statistical signature of electrobreakdown in graphene nanojunctions. Proceedings of the National Academy of Sciences of the United States of America vol. 119 (27) 
05-07-2022
bullet iconDyck O, Swett JL, Evangeli C, Lupini AR, Mol JA and Jesse S (2022). Mapping Conductance and Switching Behavior of Graphene Devices In Situ (Small Methods 3/2022). Small Methods vol. 6 (3), 2270020-2270020.  
21-03-2022

2021

bullet iconDyck O, Swett JL, Evangeli C, Lupini AR, Mol JA and Jesse S (2021). Mapping Conductance and Switching Behavior of Graphene Devices In Situ. Small Methods, Wiley-Blackwell 
15-12-2021
bullet iconFarmakidis N, Swett JL, Youngblood N, Li X, Evangeli C, Aggarwal S, Mol JA and Bhaskaran H (2021). Exploiting rotational asymmetry for sub-50 nm mechanical nanocalligraphy. Microsystems and Nanoengineering, Springer Nature [academic journals on nature.com] vol. 7 (1) 
01-12-2021
bullet iconPyurbeeva E, Hsu C, Vogel D, Wegeberg C, Mayor M, Van Der Zant H, Mol JA and Gehring P (2021). Controlling the Entropy of a Single-Molecule Junction. Nano Letters: a journal dedicated to nanoscience and nanotechnology, American Chemical Society 
12-11-2021
bullet iconPyurbeeva E, Swett JL, Ye Q, Kennedy OW and Mol JA (2021). Bias-driven conductance switching in encapsulated graphene nanogaps. Applied Physics Letters, AIP Publishing vol. 119 (13) 
27-09-2021
bullet iconFried JP, Swett JL, Nadappuram BP, Fedosyuk A, Sousa PM, Briggs DP, Ivanov AP, Edel JB, Mol JA and Yates JR (2021). Understanding Electrical Conduction and Nanopore Formation During Controlled Breakdown. Small vol. 17 (37) 
01-09-2021
bullet iconEvangeli C, McCann E, Swett JL, Tewari S, Bian X, Thomas JO, Briggs GAD, Kolosov OV and Mol JA (2021). Experimental evidence of disorder enhanced electron-phonon scattering in graphene devices. Carbon vol. 178, 632-639.  
30-06-2021
bullet iconPyurbeeva E and Mol JA (2021). A Thermodynamic Approach to Measuring Entropy in a Few-Electron Nanodevice. Entropy, MDPI vol. 23 (6) 
21-05-2021
bullet iconFried JP, Swett JL, Nadappuram BP, Mol JA, Edel JB, Ivanov AP and Yates JR (2021). In situ solid-state nanopore fabrication. Chem Soc Rev vol. 50 (8), 4974-4992.  
26-04-2021
bullet iconLaucht A, Hohls F, Ubbelohde N, Gonzalez-Zalba MF, Reilly DJ, Stobbe S, Schröder T, Scarlino P, Koski JV, Dzurak A, Yang CH, Yoneda J, Kuemmeth F, Bluhm H, Pla J, Hill C, Salfi J, Oiwa A, Muhonen JT, Verhagen E, et al. (2021). Roadmap on quantum nanotechnologies. Nanotechnology vol. 32 (16) 
16-04-2021
bullet iconCully JJ, Swett JL, Willick K, Baugh J and Mol JA (2021). Graphene nanogaps for the directed assembly of single-nanoparticle devices. Nanoscale vol. 13 (13), 6513-6520.  
07-04-2021
bullet iconDyck O, Swett JL, Lupini AR, Mol JA and Jesse S (2021). Imaging Secondary Electron Emission from a Single Atomic Layer. Small Methods vol. 5 (4) 
01-04-2021
bullet iconThomas JO, Sowa JK, Limburg B, Bian X, Evangeli C, Swett JL, Tewari S, Baugh J, Schatz GC, Briggs GAD, Anderson HL and Mol JA (2021). Charge transport through extended molecular wires with strongly correlated electrons. Chemical Science, Royal Society of Chemistry (RSC) vol. 12 (33), 11121-11129.  
01-01-2021

2020

bullet iconHarzheim A and Mol J (2020). Graphene-Based Single-Electron Transistors. 21st Century Nanoscience – A Handbook  
22-04-2020
bullet iconSowa JK, Mol JA, Briggs GAD and Gauger EM (2020). Erratum: Beyond Marcus theory and the Landauer-Büttiker approach in molecular junctions: A unified framework (Journal of Chemical Physics (2018)(149) (154112) DOI: 10.1063/1.5049537). Journal of Chemical Physics, AIP Publishing vol. 152 (9) 
03-03-2020
bullet iconHarzheim A, Sowa JK, Swett JL, Briggs GAD, Mol JA and Gehring P (2020). Role of metallic leads and electronic degeneracies in thermoelectric power generation in quantum dots. Physical Review Research, American Physical Society (APS) vol. 2 (1) 
01-02-2020
bullet iconFried JP, Bian X, Swett JL, Kravchenko II, Briggs GAD and Mol JA (2020). Large amplitude charge noise and random telegraph fluctuations in room-temperature graphene single-electron transistors. Nanoscale, Royal Society of Chemistry vol. 12 (2), 871-876.  
14-01-2020

2019

bullet iconThomas JO, Limburg B, Sowa JK, Willick K, Baugh J, Briggs GAD, Gauger EM, Anderson HL and Mol JA (2019). Understanding resonant charge transport through weakly coupled single-molecule junctions. Nature Communications, Nature Research (part of Springer Nature) vol. 10 (1) 
11-10-2019
bullet iconLimburg B, Thomas JO, Sowa JK, Willick K, Baugh J, Gauger EM, Briggs GAD, Mol JA and Anderson HL (2019). Charge-state assignment of nanoscale single-electron transistors from their current-voltage characteristics. Nanoscale, Royal Society of Chemistry vol. 11 (31), 14820-14827.  
21-08-2019
bullet iconSwett JL, Kravchenko II, Dyck OE, Jesse S and Mol JA (2019). A Versatile Common Platform for Quantum Transport Measurements in Fluidic, Cryogenic, and In Situ Electron Microscopy Environments. Microscopy and Microanalysis, Oxford University Press (OUP) vol. 25 (S2), 972-973.  
01-08-2019
bullet iconSowa JK, Mol JA and Gauger EM (2019). Marcus Theory of Thermoelectricity in Molecular Junctions. Journal of Physical Chemistry C vol. 123 (7), 4103-4108.  
13-02-2019

2018

bullet iconSchupp FJ, Mirza MM, MacLaren DA, Briggs GAD, Paul DJ and Mol JA (2018). Quantum interference in silicon one-dimensional junctionless nanowire field-effect transistors. Physical Review B vol. 98 (23) 
26-12-2018
bullet iconHarzheim A, Spiece J, Evangeli C, McCann E, Falko V, Sheng Y, Warner JH, Briggs GAD, Mol JA, Gehring P and Kolosov OV (2018). Geometrically Enhanced Thermoelectric Effects in Graphene Nanoconstrictions. Nano Letters vol. 18 (12), 7719-7725.  
12-12-2018
bullet iconSarwat SG, Youngblood N, Au Y-Y, Mol JA, Wright CD and Bhaskaran H (2018). Engineering Interface-Dependent Photoconductivity in Ge2Sb2Te5 Nanoscale Devices. ACS Applied Materials & Interfaces, American Chemical Society (ACS) vol. 10 (51), 44906-44914.  
03-12-2018
bullet iconSowa JK, Mol JA, Briggs GAD and Gauger EM (2018). Beyond Marcus theory and the Landauer-Büttiker approach in molecular junctions: A unified framework. J Chem Phys vol. 149 (15), 154112-154112.  
19-10-2018
bullet iconPuczkarski P, Wu Q, Sadeghi H, Hou S, Karimi A, Sheng Y, Warner JH, Lambert CJ, Briggs GAD and Mol JA (2018). Low-Frequency Noise in Graphene Tunnel Junctions. ACS Nano vol. 12 (9), 9451-9460.  
25-09-2018
bullet iconLimburg B, Thomas JO, Holloway G, Sadeghi H, Sangtarash S, Hou ICY, Cremers J, Narita A, Müllen K, Lambert CJ, Briggs GAD, Mol JA and Anderson HL (2018). Anchor Groups for Graphene-Porphyrin Single-Molecule Transistors. Advanced Functional Materials vol. 28 (45) 
14-09-2018
bullet iconFried JP, Swett JL, Bian X and Mol JA (2018). Challenges in fabricating graphene nanodevices for electronic DNA sequencing. MRS Communications vol. 8 (3), 703-711.  
06-09-2018
bullet iconSowa JK, Mol JA, Briggs GAD and Gauger EM (2018). Spiro-Conjugated Molecular Junctions: Between Jahn-Teller Distortion and Destructive Quantum Interference. Journal of Physical Chemistry Letters vol. 9 (8), 1859-1865.  
19-04-2018
bullet iconSarwat SG, Tweedie M, Porter BF, Zhou Y, Sheng Y, Mol J, Warner J and Bhaskaran H (2018). Revealing Strain-Induced Effects in Ultrathin Heterostructures at the Nanoscale. Nano Letters, American Chemical Society (ACS) vol. 18 (4), 2467-2474.  
06-03-2018

2017

bullet iconGehring P, Harzheim A, Spièce J, Sheng Y, Rogers G, Evangeli C, Mishra A, Robinson BJ, Porfyrakis K, Warner JH, Kolosov OV, Briggs GAD and Mol JA (2017). Field-Effect Control of Graphene-Fullerene Thermoelectric Nanodevices. Nano Letters vol. 17 (11), 7055-7061.  
08-11-2017
bullet iconSowa JK, Mol JA, Briggs GAD and Gauger EM (2017). Environment-assisted quantum transport through single-molecule junctions. Physical Chemistry Chemical Physics vol. 19 (43), 29534-29539.  
20-10-2017
bullet iconLi Y, Holloway GW, Benjamin SC, Briggs GAD, Baugh J and Mol JA (2017). Double quantum dot memristor. Physical Review B vol. 96 (7) 
31-08-2017
bullet iconPuczkarski P, Swett JL and Mol JA (2017). Graphene nanoelectrodes for biomolecular sensing. Journal of Materials Research, Cambridge University Press (CUP) vol. 32 (15), 3002-3010.  
14-08-2017
bullet iconSarwat SG, Gehring P, Rodriguez Hernandez G, Warner JH, Briggs GAD, Mol JA and Bhaskaran H (2017). Scaling Limits of Graphene Nanoelectrodes. Nano Lett vol. 17 (6), 3688-3693.  
14-06-2017
bullet iconMirza MM, Schupp FJ, Mol JA, MacLaren DA, Briggs GAD and Paul DJ (2017). One dimensional transport in silicon nanowire junction-less field effect transistors. Scientific Reports, Springer Nature vol. 7 (1) 
07-06-2017
bullet iconGehring P, Sowa JK, Cremers J, Wu Q, Sadeghi H, Sheng Y, Warner JH, Lambert CJ, Briggs GAD and Mol JA (2017). Distinguishing Lead and Molecule States in Graphene-Based Single-Electron Transistors. ACS Nano vol. 11 (6), 5325-5331.  
21-04-2017
bullet iconSowa JK, Mol JA, Briggs GAD and Gauger EM (2017). Vibrational effects in charge transport through a molecular double quantum dot. Physical Review B vol. 95 (8) 
16-02-2017

2016

bullet iconLi Y, Mol JA, Benjamin SC and Briggs GAD (2016). Interference-based molecular transistors. Scientific Reports, Springer Nature vol. 6 (1) 
20-09-2016
bullet iconGehring P, Sadeghi H, Sangtarash S, Lau CS, Liu J, Ardavan A, Warner JH, Lambert CJ, Briggs GAD and Mol JA (2016). Quantum Interference in Graphene Nanoconstrictions. Nano Letters vol. 16 (7), 4210-4216.  
13-07-2016
bullet iconSalfi J, Mol JA, Culcer D and Rogge S (2016). Charge-Insensitive Single-Atom Spin-Orbit Qubit in Silicon. Phys Rev Lett vol. 116 (24), 246801-246801.  
17-06-2016
bullet iconSalfi J, Mol JA, Rahman R, Klimeck G, Simmons MY, Hollenberg LCL and Rogge S (2016). Quantum simulation of the Hubbard model with dopant atoms in silicon. Nature Communications, Springer Nature vol. 7 (1) 
20-04-2016

2015

bullet iconLau CS, Sadeghi H, Rogers G, Sangtarash S, Dallas P, Porfyrakis K, Warner J, Lambert CJ, Briggs GAD and Mol JA (2015). Redox-Dependent Franck–Condon Blockade and Avalanche Transport in a Graphene–Fullerene Single-Molecule Transistor. Nano Letters, American Chemical Society (ACS) vol. 16 (1), 170-176.  
07-12-2015
bullet iconPuczkarski P, Gehring P, Lau CS, Liu J, Ardavan A, Warner JH, Briggs GAD and Mol JA (2015). Three-terminal graphene single-electron transistor fabricated using feedback-controlled electroburning. Applied Physics Letters, AIP Publishing vol. 107 (13) 
28-09-2015
bullet iconMol JA, Salfi J, Rahman R, Hsueh Y, Miwa JA, Klimeck G, Simmons MY and Rogge S (2015). Interface-induced heavy-hole/light-hole splitting of acceptors in silicon. Applied Physics Letters, AIP Publishing vol. 106 (20) 
18-05-2015
bullet iconSadeghi H, Mol JA, Lau CS, Briggs GAD, Warner J and Lambert CJ (2015). Conductance enlargement in picoscale electroburnt graphene nanojunctions. Proceedings of the National Academy of Sciences of the United States of America, Proceedings of the National Academy of Sciences vol. 112 (9), 2658-2663.  
17-02-2015
bullet iconMol JA, Lau CS, Lewis WJM, Sadeghi H, Roche C, Cnossen A, Warner JH, Lambert CJ, Anderson HL and Briggs GAD (2015). Graphene-porphyrin single-molecule transistors. Nanoscale, Royal Society of Chemistry (RSC) vol. 7 (31), 13181-13185.  
01-01-2015

2014

bullet iconvan der Heijde J, Salfi J, Mol JA, Verduijn J, Tettamanzi GC, Hamilton AR, Collaert N and Rogge S (2014). Probing a Single Acceptor in a Silicon Nanotransistor. 2014 Silicon Nanoelectronics Workshop (SNW)
01-06-2014
bullet iconSalfi J, Mol JA, Rahman R, Klimeck G, Simmons MY, Hollenberg LCL and Rogge S (2014). Spatially resolving valley quantum interference of a donor in silicon. Nature Materials, Springer Nature vol. 13 (6), 605-610.  
06-04-2014
bullet iconZemen J, Mašek J, Kučera J, Mol JA, Motloch P and Jungwirth T (2014). Comparative study of tight-binding and ab initio electronic structure calculations focused on magnetic anisotropy in ordered CoPt alloy. Journal of Magnetism and Magnetic Materials, Elsevier vol. 356, 87-94.  
01-04-2014
bullet iconvan der Heijden J, Salfi J, Mol JA, Verduijn J, Tettamanzi GC, Hamilton AR, Collaert N and Rogge S (2014). Probing the Spin States of a Single Acceptor Atom. Nano Letters, American Chemical Society (ACS) vol. 14 (3), 1492-1496.  
03-03-2014
bullet iconLau CS, Mol JA, Warner JH and Briggs GAD (2014). Nanoscale control of graphene electrodes. Physical Chemistry Chemical Physics, Royal Society of Chemistry (RSC) vol. 16 (38), 20398-20401.  
01-01-2014

2013

bullet iconMiwa JA, Mol JA, Salfi J, Rogge S and Simmons MY (2013). Transport through a single donor in p-type silicon. Applied Physics Letters, AIP Publishing vol. 103 (4) 
22-07-2013
bullet iconMol JA, Salfi J, Miwa JA, Simmons MY and Rogge S (2013). Interplay between quantum confinement and dielectric mismatch for ultrashallow dopants. Physical Review B, American Physical Society (APS) vol. 87 (24) 
13-06-2013
bullet iconMol JA and Rogge S (2013). Circuits with Single-Atom Devices. Single-Atom Nanoelectronics  341-356.  
17-04-2013
bullet iconMol JA and Rogge S (2013). Circuits with Single-Atom Devices. Single-Atom Nanoelectronics  329-343.  
01-01-2013

2012

bullet iconFresch B, Verduijn J, Mol JA, Rogge S and Remacle F (2012). Querying a quasi-classical Oracle: One-bit function identification problem implemented in a single atom transistor. EPL (Europhysics Letters), IOP Publishing vol. 99 (2) 
01-07-2012

2011

bullet iconMol JA, van der Heijden J, Verduijn J, Klein M, Remacle F and Rogge S (2011). Balanced ternary addition using a gated silicon nanowire. Applied Physics Letters, AIP Publishing vol. 99 (26) 
26-12-2011
bullet iconMol JA, Verduijn J, Levine RD, Remacle F and Rogge S (2011). Integrated logic circuits using single-atom transistors. Proceedings of the National Academy of Sciences of the United States of America, Proceedings of the National Academy of Sciences vol. 108 (34), 13969-13972.  
01-08-2011

2010

bullet iconJohnson BC, Tettamanzi G, Yang C, Alves A, Van Donkelaar J, Thompson S, Verduijn A, Mol JA, Wacquez R, Vinet M, Dzurak A, Sanquer M, Rogge S and Jamieson D (2010). Single Ion Implantation into Si-Based Devices. 
01-10-2010
bullet iconYan Y, Mol JA, Verduijn J, Rogge S, Levine RD and Remacle F (2010). Electrically Addressing a Molecule-Like Donor Pair in Silicon: An Atomic Scale Cyclable Full Adder Logic. The Journal of Physical Chemistry C, American Chemical Society (ACS) vol. 114 (48), 20380-20386.  
29-07-2010
bullet iconJohnson BC, Alves A, Van Donkelaar J, Thompson S, Yang C, Jamieson D, Verduijn A, Mol J, Tettamanzi G, Rogge S, Wacquez R, Vinet M and Dzurak A (2010). Single Dopant Implantation into a Nanoscale MOSFET Devices. ECS Meeting Abstracts, The Electrochemical Society vol. MA2010-02 (23), 1570-1570.  
08-07-2010
bullet iconJohnson BC, Tettamanzi GC, Alves ADC, Thompson S, Yang C, Verduijn J, Mol JA, Wacquez R, Vinet M, Sanquer M, Rogge S and Jamieson DN (2010). Drain current modulation in a nanoscale field-effect-transistor channel by single dopant implantation. Applied Physics Letters, AIP Publishing vol. 96 (26) 
28-06-2010
bullet iconMol JA, Beentjes SPC and Rogge S (2010). A low temperature surface preparation method for STM nano-lithography on Si(100). Applied Surface Science, Elsevier vol. 256 (16), 5042-5045.  
01-06-2010
bullet iconKlein M, Mol JA, Verduijn J, Lansbergen GP, Rogge S, Levine RD and Remacle F (2010). Ternary logic implemented on a single dopant atom field effect silicon transistor. Applied Physics Letters, AIP Publishing vol. 96 (4) 
25-01-2010

2009

bullet iconKlein M, Lansbergen GP, Mol JA, Rogge S, Levine RD and Remacle F (2009). Reconfigurable Logic Devices on a Single Dopant Atom—Operation up to a Full Adder by Using Electrical Spectroscopy. ChemPhysChem, Wiley vol. 10 (1), 162-173.  
07-01-2009

2008

bullet iconLi Z, Mol JA, Lagae L, Borghs G, Mertens R and Van Roy W (2008). Pulsed field induced magnetization switching in (Ga,Mn)As. Applied Physics Letters, AIP Publishing vol. 92 (11) 
17-03-2008

Grants

solid heart iconGrants of specific relevance to the Centre for Chemical Research
bullet iconNNL Game Changer Challenge
Jan Mol and James Thomas
£10,000 NNL National Nuclear Laboratory Limited (01-11-2024 - 31-01-2025)
solid heart iconUKRI FLF Renewal
Jan Mol
£593,003 MRC Medical Research Council (01-01-2024 - 31-12-2026)
solid heart iconBio-molecular nanocarbon junctions for low-power computing
Matteo Palma and Jan Mol
£95,848 Defence Science and Technology Lab.-GOV UK (01-10-2022 - 30-09-2025)


bullet iconFrom Nanoscale Structure to Nanoscale Function
Jan Mol
£59,147 EPSRC Engineering and Physical Sciences Research Council (01-02-2024 - 31-07-2024)
bullet iconSingle-Electron Quantum Devices for Ultra-Low Background Particle Detection Experiments
James Thomas, Adrian Bevan and Jan Mol
£36,893 Science & Technology Research Council (STFC) (01-11-2023 - 31-01-2024)
solid heart iconKTP with Exactmer
Matteo Palma and Jan Mol
£230,941 Innovate UK (01-09-2022 - 31-08-2024)
solid heart iconWohl Clean Growth Alliance Grant: Fabrication of a micro-fuel cell
Jan Mol
£10,000 British Council (03-10-2021 - 31-07-2023)
solid heart iconUKRI FLF
Jan Mol
£1,154,526 UKRI UK Research & Innovation (01-01-2020 - 31-12-2023)
bullet iconMULTIPLEXED GRAPHENE BIOSENSORS
Jan Mol
£20,000 Royal Society (15-10-2019 - 14-10-2021)
bullet iconSingle-molecule electronics - RAEng fellowship transfer in
Jan Mol
£396,246 Royal Academy of Engineering (01-09-2018 - 31-07-2021)